مقدمه

تا قبل از چت چی پی تی (ChatGPT) در نوامبر ۲۰۲۲، تصور عمومی این بود که هوش مصنوعی یک موضوع دانشگاهی است که ارتباطی با زندگی روزمره ندارد ولی ممکن است ارتباطی با کامپیوتر و اینترنت و امثال آن داشته باشد. بر خلاف تصور عمومی، هوش مصنوعی سال هاست که در بعضی از زمینه های زندگی روزمره بسیاری مردم در بسیاری از کشورها حضور مستقیم دارد. به عنوان مثال، سال ها است که صفحه نمایش کامپیوترها و تلفن های هوشمند و مانند آنها از هوش مصنوعی برای نمایش متن، تصویر و ویدیو استفاده می کنند. بعد از چت چی پی تی، (Bard) و (Azure) هم وجود دارند.

این نوشته، سعی دارد خلاصه مهم ترین موضوعاتی از هوش مصنوعی را که با زندگی عمومی مردم سر و کار دارد را با زبان غیر تخصصی شرح دهد. نویسنده، خودش هوش مصنوعی بلد نیست ولی راجع به تاثیرات آن بر روی زندگی مردم اندکی مطالعه کرده است. ضرورت مطالبی از این دست، و گروه مخاطب، گروه اندک شماری از افراد جامعه هستند که آگاهی بیشتری از چیستی و منافع و ضرر های هوش مصنوعی پیدا کنند. در واقع، هوش مصنوعی، یکی از پنج تهدید یا خطر وجودی (Existential) برای ادامه حیات نوع بشر بر روی کره زمین است (Ord, 2020). اگر او با ما کاری نداشت، ما هم با او کاری نداشتیم. ولی مثل این که قضیه این است که هوش مصنوعی با ما کار دارد، و خیلی هم کار دارد.
برای مطالبی که از دیگران است، رفرانس مشخص شده، جایی که برداشت شخصی بیان شده، برداشت شخصی به صراحت عنوان شده است.

سیر تاریخی حرکت از آمار سنتی به هوش مصنوعی

رشته یا علم آمار (Statistics) از ابتدای پیدایش خود بر مساله پیشبینی (Prediction) متمرکز بوده است. تا دهه ۱۹۸۰ میلادی، مقدار توان موجود محاسبات کامپیوتری، به طور معمول، اجازه نمی داد که روش ها و مدل های آماری از خانواده مدل های خطی (Linear) فراتر رود. با افزایش توان موجود محاسبات کامپیوتری، درخت های طبقه بندی و رگرسیون (Classification And Regression Trees, CART) معرفی شدند و نرم افزار برای آن ساخته و به کار گرفته شد. از آن زمان به بعد، رشته ای در آمار به نام یادگیری آماری (Statistical learning) پدید آمد که در آن، مدل آماری، از خود داده های ورودی استفاده کرده، و یاد می گیرد که چگونه پارامترهای خود را بهینه کند (Optimization) تا خطای مدل به حداقل و عملکرد مدل به حداکثر برسد. ادامه یادگیری آماری، در یادگیری توسط ماشین (Machine learning) دنبال می شود که منظور از ماشین در اینجا، مدل آماری یا مدل یادگیری آماری است که در درون دستگاه کامپیوتر قرار دارد. زبان های برنامه نویسی (Python) و (R) مثال هایی از زبان های رایج مورد استفاده در برنامه های یادگیری آماری و هوش مصنوعی هستند (James et al. 2013). موضوع حرکت کلی از اردوگاه پیشبینی به اردوگاه طبقه بندی در آمار مدرن، یک مساله کلیدی و بنیادی است. همان طور که در دانشگاه های ایران، به طور کلی و عمومی، نظام آموزشی عملکرد خوبی ندارد، در مورد این تحول در علم آمار جدید نیز، وضع آموزش و کاربرد از سایر رشته های علمی هم بدتر است. (به مسئول درس یک بخش در یک دانشکده در اوایل کورونا گفتم که بخش دارد در این زمینه عقب می افتد و خوب است درس داده شود و فاصله جبران شود. فرمودند کسی که درست و حسابی بلد باشد درس بدهد نداریم.)

کامپیوتر، اینترنت، و ارتش ایالات متحده آمریکا

در بالا، به مقدار توان موجود محاسبات کامپیوتری به طور معمول، اشاره شد. البته در شرایط استثنایی، بالاترین توان موجود محاسبات کامپیوتری، برای مقاصد نظامی و تسلیحاتی فراهم شده و مورد استفاده قرار می گیرد. برای ساختن و آزمایش های اولیه بمب اتمی در ایالات متحده، نیاز به توان انجام محاسبات عددی و ریاضی پیچیده در مدت زمان کوتاه وجود داشت. دانشمندان برجسته ای که در (Institute for Advanced Study) دانشگاه پرینستون گردآوری شده بودند، منجمله انیشتین، محاسبات ریاضی مورد نیاز برای ساختن بمب اتمی را تدوین کردند. برای اجرای این محاسبات و انجام آزمایش ها در (Los Alamos National Laboratory) در نیومکزیکو، اولین کامپیوتر واقعی با توان حداکثر محاسباتی قابل دسترس در زمان خود، ساخته شد (پروژه منهتن). شکل اولیه اینترنت به نام آرپانت هم برای مقاصد نظامی و توسط ارتش ایالات متحده ایجاد شد (Dyson, 2012). بنابراین، هر جای که نیازهای نظامی و تسلیحاتی اقتضا کند، خیره کننده ترین تکنولوژی ها (کامپیوتر قوی)‌ و حتی اختراعات (آرپانت) برای آن فراهم می شود. این موضوع، به خطرات هوش مصنوعی ارتباط دارد و در ادامه به آن اشاره خواهد شد.

علم داده ها (Data science)

زیان برنامه نویسی و محیط نرم افزار (R) که در بالا به آن اشاره شد، در ابتدا در ادامه نرم افزارهای معمولی یا (Conventional) آماری مانند (SPCC)، (SAS)، و (Stata) به وجود آمد. با این تفاوت که نرم افزارهای سنتی آماری، تجاری و (Closed source) هستند یعنی کاربر باید پول بدهد و بخرد. در مقابل، آر، (Open source) و مجانی است. به تدریج روش های آماری جدید تر، یادگیری آماری، یادگیری ماشینی، و هوش مصنوعی در زبان آر نوشته و ارایه شدند. همچنین رشته ای به نام (Data science) درست شد که هم از آمار سنتی و یادگیری آماری استفاده می کند و هم از همه زبان های برنامه نویسی کامپیوتری و همچنین علم نرم افزار، سخت افزار و شبکه. در نتیجه با ترکیب آمار و کامپیوتر، حوزه جدید (Data science) به وجود آمده است که مثلا در ابداع و ساختن کامپیوتر (Apple)، سیستم عامل و برنامه های (Windows)، و تقریبا هر چیزی که در کامپیوتر و اینترنت می بینیم و یا نمی بینیم از آن استفاده می شود. زبان پایتون هم تاریخچه کمابیش مشابهی دارد که از ذکر آن در اینجا برای رعایت اختصار خودداری می شود (Bruce and Bruce, 2020Grus, 2019). 

تعریف هوش مصنوعی

کتاب (Russell and Norvig, 2003) از متون دانشگاهی اصلی در مورد هوش مصنوعی است. هوش مصنوعی با هدف مطالعه علمی و کاربردی هوش و هوش انسانی، و شبیه سازی هوش انسانی در محیط برنامه های کامپیوتری به وجود آمد. اینکه خود هوش چیست، داستان مفصلی است و دو تا از تعاریف آن به عنوان نمونه، عبارتند از توانایی حل مساله و یا قدرت سازگاری با محیط. هوش، از دو ساخت درونی (غیر دیدنی) تفکر و استدلال و یک ساخت خارجی (قابل مشاهده) رفتار تشکیل می شود. هوش مصنوعی با مطالعه روانشناسی، شناخت، و هوش انسان، سعی می کند ساختارها و عملکردهای مرتبط با هوش را شناسایی کند، و از این نتایج در ساختن برنامه های کامپیوتری که بتوانند کمابیش همان ساختارها و عملکرد ها را باز آفرینی کنند استفاده می کند. (Russell and Norvig, 2003).

نظرات

نظر (به‌وسیله فیس‌بوک)